首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11301篇
  免费   1423篇
  国内免费   1183篇
化学   9163篇
晶体学   77篇
力学   709篇
综合类   81篇
数学   356篇
物理学   3521篇
  2024年   11篇
  2023年   85篇
  2022年   202篇
  2021年   307篇
  2020年   381篇
  2019年   329篇
  2018年   333篇
  2017年   403篇
  2016年   444篇
  2015年   498篇
  2014年   514篇
  2013年   806篇
  2012年   819篇
  2011年   710篇
  2010年   616篇
  2009年   595篇
  2008年   606篇
  2007年   698篇
  2006年   626篇
  2005年   531篇
  2004年   538篇
  2003年   465篇
  2002年   364篇
  2001年   284篇
  2000年   279篇
  1999年   275篇
  1998年   226篇
  1997年   263篇
  1996年   201篇
  1995年   219篇
  1994年   180篇
  1993年   143篇
  1992年   150篇
  1991年   120篇
  1990年   122篇
  1989年   103篇
  1988年   94篇
  1987年   70篇
  1986年   50篇
  1985年   43篇
  1984年   45篇
  1983年   22篇
  1982年   28篇
  1981年   18篇
  1980年   25篇
  1979年   18篇
  1978年   12篇
  1977年   8篇
  1976年   6篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Circularly polarized luminescence (CPL) has attracted attention as a next-generation light signal because of its carrying more information compared with normal and linearly polarized lights as well as its potential wide application in information fields. Recently, much attention has been paid to small organic molecules-based CPL emitters because of easy synthesis, fine structural modification at molecular level, and tunable wide range emission wavelength. This review highlights the development of small organic molecules-based CPL emitters in the past 5 years (2017–2021). The progress suggests that small organic molecules-based CPL emitters provide a simple and efficient way to generate CPL.  相似文献   
2.
Large amounts of flowback and produced water (FPW) have been generated from hydraulic fracturing process for the production of unconventional gas such as shale gas. Complex organic pollutants are abundantly present in FPW with revealed toxicity to aquatic organisms and these contaminants may transfer into surrounding aquatic environment. Characterization and determination of complicated organic pollutants in FPW remains a challenge due to its complex composition and high salinity matrix. This review article covers the progress of recent 5 years regarding the sample preparation and instrumental analysis methods and thus summarizes the advantages and disadvantages of these methods for critical analysis of organic contaminants in FPW samples. Furthermore, the natural distribution of detected organic compounds and their transformation were reviewed and discussed to enhance the understanding of spatial and temporal behaviors of these organic pollutants in natural environment, paving the way for future development of pollution control policies and strategies. Enlightened by the studies of FPW contamination in the US, the investigations of FPW contamination in China continued to grow due to rapidly growing production of shale gas in China and resulted pollution.  相似文献   
3.
One important prerequisite for the fabrication of molecular functional device strongly relies on the understanding the conducting behaviors of the metal-molecule-metal junction that can respond to an external stimulus. The model Lewis basic molecule 4,4′-(pyridine-3,5-diyl)dibenzonitrile (DBP), which can react with Lewis acid and protic acid, was synthesized. Then, the molecular conducting behavior of DBP, DBP-B(C6F5)3, and DBP-TfOH (DBP-B(C6F5)3, and DBP-TfOH were produced by Lewis acid and protonic acid treatment of DBP) was researched and compared. Given that their identical physical paths for DBP, DBP-B(C6F5)3, and DBP-TfOH to sustain charge transport, our results indicate that modifying the molecular electronic structure, even not directly changing the conductive physical backbone, can tune the charge transporting ability by nearly one order of magnitude. Furthermore, the addition of another Lewis base triethylamine (of stronger alkaline than DBP), to Lewis acid-base pair reverts the electrical properties back to that of a single DBP junction, that is constructive to propose a useful but simple strategy for the design and construction of reversible and controllable molecular device based on pyridine derived molecule.  相似文献   
4.
近年来,设计和合成高性能非富勒烯受体(NFAs)材料已经成为太阳能电池研究领域的前沿课题。基于DA'D型稠环结构的NFAs由于具有吸光系数高、能级和带隙可调、结构易于修饰、分子可高效合成、光电学性能优异等优点而受到了越来越广泛的关注。在短短7年的时间里,能量转换效率(PCE)从3%~4%提高到18%。2019年初邹应萍等报道了一个优秀的受体分子Y6,与PM6共混制备单结电池,获得了15.7%的能量转换效率。Y6类受体材料的中心给电子单元为DA'D型稠环结构,缺电子单元(A')通过氮原子与两个给电子单元(D)并联形成稠环结构,这有助于降低前线分子轨道能级并增强吸收,同时与氮相连的两个烷基链和位于噻吩并噻吩β位的两个侧链则有助于提高溶解度及调节结晶性。自Y6问世以来,人们对分子的结构剪裁进行了深入的研究,并报道了数十种新的结构。在这些新的受体中,DA'D部分的结构裁剪对提高器件效率和太阳能电池的性能起着至关重要的作用。本文对A'、D单元和侧链结构修饰的研究进展进行了综述。通过选择几组受体,对最近报道的分子进行分类,并将它们的光学、电化学、电学和光电性质与精确的结构修饰相关联,从而对结构-性能关系进行全面概述。  相似文献   
5.
A facile headspace single drop microextraction method was developed using deep eutectic solvent‐based magnetic bucky gel as the extraction solvent for the first time. The hydrophobic magnetic bucky gel was formed by combining choline chloride/chlorophenol deep eutectic solvent and magnetic multiwalled carbon nanotube nanocomposite. Magnetic susceptibility, high viscosity, high sorbing ability, and tunable extractability of organic analytes are the desirable advantages of the prepared gel. Using a rod magnet as a suspensor in combination with the magnetic susceptibility of the prepared gel resulted in a highly stable droplet. This stable droplet eliminated the possibility of drop dislodgement. The prepared droplet made it possible to complete the extraction process in high temperatures and elevated agitation rates. Furthermore, using larger micro‐droplet volumes without any operational problems became possible. These facts resulted in shorter sample preparation time, higher sensitivity of the method, and lower detection limits. Under the optimized conditions, an enrichment factor of 520–587, limit of detection of 0.05–0.90 ng/mL, and linearity range of 0.2–2000 ng/mL (coefficient of determination = 0.9982–0.9995) were obtained. Relative standard deviations were < 10%. This method was successfully coupled with gas chromatography and used for the determination of benzene, toluene, ethylbenzene, and xylene isomers as harmful volatile organic compounds in water and urine samples.  相似文献   
6.
Eight-coordinated DyIII centres with D6h symmetry are expected to act as high-performance single-molecule magnets (SMMs) due to the simultaneous fulfilment of magnetic axiality and a high coordination number (a requisite for air stability). But the experimental realization is challenging due to the requirement of six coordinating atoms in the equatorial plane of the hexagonal bipyramid; this is usually too crowded for the central DyIII ion. Here a hexaaza macrocyclic Schiff base ligand and finetuned axial alkoxide/phenol-type ligands are used to show that a family of hexagonal bipyramidal DyIII complexes can be isolated. Among them, three complexes possess nearly perfect D6h local symmetry. The highest effective magnetic reversal barrier is found at 1338(3) K and an open hysteresis temperature of 6 K at the field sweeping rate of 1.2 mT s−1; this represents a new record for D6h SMMs.  相似文献   
7.
This review gives an overview of the evolution of the technology of condensed mode cooling, primarily for the case of ethylene polymerization on supported catalysts in fluidized bed reactors. It is well known that this mode of heat removal is quite effective in allowing polyolefin manufacturers to increase significantly production rates. What is perhaps less well understood are all of the issues that, in addition to the effect of the latent heat of vaporization of injected liquid components, also have an impact on the rate of production and behavior of the reactor. However, the liquid components injected into the reactor can vaporize rapidly under full‐scale conditions, leaving behind several heavy components (with respect to ethylene) that have numerous effects on how the particles behave, on the reaction rate, and on fluidization, fouling, and other parameters related to reactor and process performance.  相似文献   
8.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   
9.
An analytical method to identify volatile organic compounds (VOCs) in the exhaled breath from patients with a diagnosis of chronic obstructive pulmonary disease (COPD) using a ultrafast gas chromatography system equipped with an electronic nose detector (FGC eNose) has been developed. A prospective study was performed in 23 COPD patients and 33 healthy volunteers; exhalation breathing tests were performed with Tedlar bags. Each sample was analyzed by FCG eNose and the identification of VOCs was based on the Kovats index. Raw data were reduced by principal component analysis (PCA) and canonical discriminant analysis [canonical analysis of principal coordinates (CAP)]. The FCG eNose technology was able to identify 17 VOCs that distinguish COPD patients from healthy volunteers. At all stages of PCA and CAP the discrimination between groups was obvious. Chemical prints were correctly classified up to 82.2%, and were matched with 78.9% of the VOCs detected in the exhaled breath samples. Receiver operating characteristic curve analysis indicated the sensitivity and specificity to be 96% and 91%, respectively. This pilot study demonstrates that FGC eNose is a useful tool to identify VOCs as biomarkers in exhaled breath from COPD patients. Further studies should be performed to enhance the clinical relevance of this quick and ease methodology for COPD diagnosis.  相似文献   
10.
Two new Zn2Dy2 complexes were constructed from Zn (II) salen‐type Schiff base complex fragment and 2,6‐pyridinedimethanol (H2pdm) or its Br‐substituted analogue (4‐bromopyridine‐2,6‐diyl)dimethanol (H2Brpdm); their molecular formulas are [Zn2Dy2(L)2(pdm)2(MeOH)2](ClO4)2 [ 1 , H2L = N, N′‐ bis(3‐methoxysalicylidene)‐1,3‐diaminopropane] and [Zn2Dy2(L)2(Brpdm)2(MeOH)2](ClO4)2 [ 2 ], the Dy (III) ions of which have a NO7 triangular dodecahedral coordination sphere. The two complexes show not only ferromagnetic interaction but also field‐induced single‐molecule magnet (SMM) behavior, which are rare Dy (III)‐containing cluster complexes with the NO7 triangular dodecahedral coordination sphere that can show good magnetic relaxation. The energy barrier value of complex 2 is higher than those of complex 1 and the Dy (III) complexes with the DyNO7 triangular dodecahedral coordination configuration reported in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号